perm filename CIRCUM.SLI[S78,JMC] blob
sn#353798 filedate 1978-05-11 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 SLIDES FOR CIRCUMSCRIPTION LECTURE - May 10, 1978
C00003 00003 okmove(x,l,s) ⊃ at(x,l,result(move(x,l),s))
C00004 ENDMK
C⊗;
SLIDES FOR CIRCUMSCRIPTION LECTURE - May 10, 1978
Suppose we know of just two individuals a and b.
P(a) ∧ P(b) ⊃ ∀x.P(x)
∀x.(P(x) ≡ x=a ∨ x=b)
(a=a ∨ a=b) ∧ (b=a ∨ b=b) ⊃ ∀x.(x=a ∨ x=b)
This is killing a fly with a sledge hammer.
P(a) ∧ P(b) ∧ ∀xy.(P(x,y) ⊃ P(f(x,y))) ⊃ ∀x.(Q(x) ⊃ P(x))
gets us
Q(a) ∧ Q(b) ∧ Q(f(a,a)) ∧ Q(f(b,b)) ∧ Q(f(a,b)) ∧ Q(f(b,a)) ∧ Q(f(a,f(b,a))) ∧ etc.
P(0) ∧ ∀n.(P(n) ⊃ P(n+1)) ⊃ ∀n.(integer n ⊃ P(n))
THE THINGS I KNOW ABOUT ARE ALL THAT IS RELEVANT.
okmove(x,l,s) ⊃ at(x,l,result(move(x,l),s))